	FLUID MECHANI	CS	
В	.E, IV Semester, Mechanical	Engineering	
[As per Choice Based Credit System (CBCS) scheme]			
Course Code	17ME44	CIE Marks	40
Number of Lecture	04	SEE Marks	60
Hours/Week			
Total Number of Lecture	50(10 Hours per Module)	Exam Hours	03
Hours			
	Credits – 04		
Course Objectives:			
-	edge of the basic properties of f	luids and understand the c	continuum
approximation			
• To Calculate the forces ex	erted by a fluid at rest on subme	erged surfaces and unders	stand the force
of buoyancy			
• To understand the flow ch	aracteristic and dynamics of flo	w field for various Engin	eering
applications			
• To know how velocity cha	inges and energy transfers in flu	id flows are related to for	rces and
torques and to understand	why designing for minimum lo	oss of energy in fluid flow	vs is so
important.			
• To discuss the main prope	rties of laminar and turbulent p	ipe flow and appreciate th	eir differences
and the concept of bounda	ry layer theory.		
• Understand the concept of	dynamic similarity and how to	apply it to experimental i	modeling
• To appreciate the consequ	ences of compressibility in gas	flow and understand the e	effects of
friction and heat transfer			
	Module – 1		
Basics: Introduction, Prope	rties of fluids-mass density, w	veight density, specific v	olume, specific
gravity, viscosity, surface to	ension, capillarity, vapour pres	sure, compressibility and	bulk modulus
Concept of continuum, type	s of fluids etc, pressure at a point	nt in the static mass of flu	uid, variation of
pressure, Pascal's law, Abso	lute, gauge, atmospheric and va	cuum pressures pressure	measurement
by simple, differential mano	meters and mechanical gauges.		
Fluid Statics: Totalpressure	e and center of pressure for home	rizontal plane, vertical plane	ane surface and
	erged in static fluid.Buoyancy, o		center and meta
centric heightits application	in shipping, stability of floating	g bodies.	
***	Module – 2		
Fluid Kinematics and Dyn			
• •	of Flow-steady, unsteady, un		
	onal, compressible, incompress		
-	ocity components, convective a		• •
•	equation in Cartesian co-ordin	•	
	potential and Poisson equation	in stream function, flow	net, Problems.
Fluid Dynamics:	acts of icts formed on fined	and moving yorge A	at and an
	acts of jets- force on fixed		
numericals.Euler's equation	n, Integration of Euler's eq	uation to obtain Berno	un s equation

Nomentum equation, Impacts of jets- force on fixed and moving vanes, flat and curved. Numericals.Euler's equation, Integration of Euler's equation to obtain Bernoulli's equation, Bernoulli's theorem, Application of Bernoulli's theorem such as venturi meter, orifice meter, rectangular and triangular notch, pitot tube, orifices etc., related numericals.

Module – 3

Laminar and turbulent flow: Reynods Number, Entrance flow and Developed flow, Navier-Stokes Equation (no derivation), Laminar flow between parallel plates, Poiseuille equation – velocity profile, Couette flow, Fully developed laminar flow in circular pipes, Hagen - Poiseuille equation, related numericals.

Energy consideration in pipe flow, Loss of Pressure Head due to Fluid Friction, Darcy Weishach formula, major and minor losses in pipes, Commercial pipe, Colebrook equation, Moody equation/ diagram. Pipes in series, parallel, equivalent pipe, Related Numericals and simple pipe design problems.

Module – 4

Flow over bodies: Development of boundary layer, Prandtl's boundary layer equations, Blasius solution, laminar layer over a flat plate, boundary layer separation and its control.

Basic concept of Lift and Drag, Types of drag, Co-efficient of drag and lift, streamline body and bluff body, flow around circular bodies and airfoils, Lift and drag on airfoil, Numerical problems.

Dimensional analysis: Need for dimensional analysis, Dimensions and units, Dimensional Homogeneity and dimensionless ratios, methods of dimensional analysis, Rayleigh's method, Buckingham Pi theorem, Similitude and Model studies. Numerical problems

Module - 5

Compressible Flows: Introduction, thermodynamic relations of perfect gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for one-dimensional flow, stagnation and sonic Properties, normal and oblique shocks.

Introduction to CFD: Necessity, limitations, philosophy behind CFD, and applications.

Course outcomes:

- Identify and calculate the key fluid properties used in the analysis of fluid behavior.
- Understand and apply the principles of pressure, buoyancy and floatation
- Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering.
- Understand and apply the principles of fluid kinematics and dynamics.
- Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form Dimensionless numbers in terms of input output variables.
- Understand the basic concept of compressible flow and CFD

TEXT BOOKS:

- 1. Fluid Mechanics (SI Units), Yunus A. Cengel John M.Cimbala, 3rd Ed., Tata a. McGraw Hill, 2014.
- 2. Fluid Mechanics, F M White, McGraw Hill Publications Eighth edition. 2016
- 3. Mechanics of Fluids, Merle C. Potter, Devid C. Wiggerrt, Bassem H. Ramadan, Cengage learning, Fourth editions 2016.

REFERENCE BOOKS

- 1. Fundamentals of Fluid Mechanics by Munson, Young, Okiishi& Huebsch, John Wiley Publications.7th edition.
- 2. Fluid Mechanics, Pijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd Ed. 2005.
- 3. Fluid Mechanics, John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Pearson Education Asia, 5th ed., 2006.
- 4. Introduction to Fluid Mechanics by Fox, McDonald, John Wiley Publications,8th edition.